Photosymbiotic giant clams are transformers of solar flux.

نویسندگان

  • Amanda L Holt
  • Sanaz Vahidinia
  • Yakir Luc Gagnon
  • Daniel E Morse
  • Alison M Sweeney
چکیده

'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal

Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. S...

متن کامل

A Novel Flux-Based Protection Scheme for Power Transformers

Internal Turn-Turn faults (TTF) are the most common failures in power transformers, which could seriously reduce their life expectancy. Although common protection schemes such as current-baseddifferential protection are able to detect some of the internal faults, some other minor ones (such as TTFs andshort circuit near the neutral point) cannot be detected by such schemes. Likewise, these rela...

متن کامل

Nonlinear Model of Tape Wound Core Transformers

Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a...

متن کامل

Giant flux ropes observed in the magnetized ionosphere at Venus

[1] The Venus ionospheric response to solar and solar wind variations is most evident in its magnetic field properties. Early Pioneer Venus observations during the solar maximum revealed that the Venus ionosphere exhibits two magnetic states depending on the solar wind dynamic pressure conditions: magnetized ionosphere with large-scale horizontal magnetic field; or unmagnetized ionosphere with ...

متن کامل

Calculating the Contribution of Zooxanthellae to Giant Clams Respiration Energy Requirements

Giant clams (Tridacnidae) are known to live in association with photosynthetic single cell dinoflagellate algae commonly called zooxanthellae. These algae which can be found in the mantle of the clams are capable of transferring part of their photosynthates which become an important source of energy to the host ( apart from filter feeding activity). In order to understand the basic biological p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 101  شماره 

صفحات  -

تاریخ انتشار 2014